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Abstract

Collaborative filtering (CF) is one of the most prominent recommender system (RecSys) techniques of the recent years. CF
generates rating predictions for the items that the user has not evaluated yet, using the evaluations of users with similar likings
to the same items. Therefore, in CF the task of finding these users (which can be considered as reliable recommenders) is of
high importance, while this task is especially challenging on sparse datasets. To this end, many user similarity metrics have
been introduced and used in the literature, such as the Vector (or Cosine) Similarity metric, the Spearman rank correlation,
the Pearson Correlation Coefficient (PCC), and others. For a CF RecSys, the use of the most efficient similarity metric is of
great importance. This paper assesses the effectiveness of 15 user similarity metrics in sparse CF datasets, by conducting an
extensive set of experiments. These experiments include 10 sparse CF datasets with diverse item domains, two neighbour
selection approaches, two rating prediction formulas, and three rating prediction accuracy metrics. The evaluation results
show that the metrics that achieve the best prediction results are found to be the Spearman rank correlation, followed by the
Adjusted Rand Index, the Constrained PCC, and the Chebysev distance. Interestingly, the most widely used similarity metrics
in CF research, i.e. the PCC and the Cosine Similarity, are not among the best performing metrics.
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1 Introduction

Over the last years, the World Wide Web has become an
information chaos, which makes it challenging for users to
find useful and interesting information, from products and
services to news and weather forecasts. In this direction,
research on RecSys can be very encompassing [1]. The target
of a RecSys is to produce useful and personalised recom-
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mendations to its users. RecSys are applied to a very broad
spectrum of domains, ranging from web services [2] and
social networks [3, 4] to cultural heritage [5, 6] and open-
source software [7].

One of the most widespread RecSys methods of the recent
years is CF. The main idea behind CF is that, as in real life,
people tend to trust individuals with similar views and like-
ness to them when asking for recommendations of products
and services. Therefore, CF users that are calculated to be
close to the active user can be used as (reliable) recom-
menders [8, 9].

Typically, a CF RecSys encompasses three steps. During
the first step, similarities between all users are calculated to
find the set of users that will operate as recommenders for
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each user. This user set is referred to as Near Neighbours
(NNs). Afterwards, in the second step, predictions are gen-
erated for the items that each user has not already evaluated.
Lastly, in the third step, the items achieving the highest pre-
diction values for each user are presented to them [10].

Over the last years, numerous research works have tar-
geted all three aforementioned steps. The evaluation of a CF
RecSys algorithm is accomplished either by engaging real
users (i.e. humans who receive and evaluate recommenda-
tions), or using CF datasets that are widely used and accepted
by the RecSys research community, such as the Amazon
datasets [11], the MovieLens datasets [12], the CiaoDVD
dataset [13], the Epinions dataset [14], and others.

The majority of the research works fall into the latter cate-
gory, where evaluation is conducted by splitting the original
dataset into test and train parts. Then the training part is used
to compute similarities and identify NNs, while subsequently
the CF algorithm uses similarities and NNs computed dur-
ing the training stage in order to predict the ratings for the
remaining test part [15]. The lower the difference between
these predictions and the actual user ratings is, the more suc-
cessful the algorithm is regarded as. In this context, numerous
user similarity metrics have been introduced and used, such
as the Vector (or Cosine) Similarity metric (COS), the Spear-
man rank correlation, the Kendall’s Tau, the Jaccard index,
the PCC, and so on. As a result, different research works
employ different user similarity metrics.

CF datasets differ in the number of user ratings and/or item
ratings per user and/or per item they contain, with the ratio
%m% being referred to as density, while the quantity
1 —density is referred to as sparsity. Datasets are considered
to be very sparse if their density is < 1% [16]. These datasets
exhibit lower rating prediction accuracy, since it is much
more challenging to find near and, hence, reliable neighbours,
making the selection of the user similarity metric(s) of great
importance. For example, the work by [17] uses only the
PCC metric, the work by [18] uses only the COS metric, the
work by [19] uses both the Vector Similarity and the PCC,
and the work by [20] uses the PCC, the COS, and the Jaccard
Similarity Index.

1.1 Research questions

Considering the above, this work aims to answer the follow-
ing important research questions (RQs):

e RQI: Which user similarity metrics yield the best results
when the CF algorithm is applied to sparse CF datasets?

e RQ2: Do other parameters of the CF algorithm (e.g.
neighbour selection approach, rating prediction formula,
dataset density) affect the performance of user similarity
metrics and the relative ordering of the metrics’ perfor-
mance?
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e RQ3: Considering that the COS and the PCC are the
most frequently used metrics in CF research/practice in
general and CF research/practice on sparse datasets in
particular, should researchers and practitioners consider
shifting to other metrics or widening their selections to
include additional metrics?

1.2 Research objective

To answer the stated RQs, the aim of this work is to assess the
effectiveness of user similarity metrics in sparse CF datasets,
by conducting a comprehensive multi-parameter series of
experiments, which:

1. includes 15 similarity metrics, commonly used in CF
RecSys research,

2. uses both the top-k technique (which selects the k-
nearest users for each user) and the correlation threshold
technique (which sets a threshold and keeps only the
users whose similarities with the active user, meet or
exceed this threshold),

3. uses both the mean-centred formula and the weighted
sum method in the rating prediction formulation phase,

4. includes 10 sparse CF datasets, from five different
sources, commonly used in CF RecSys research, and

5. uses three rating prediction accuracy metrics, broadly
used by researchers in the CF RecSys domain.

To ensure the reliability of the results, all similarity met-
rics are tested on the same 10 datasets, using the same rating
prediction configurations (near neighbour selection methods,
parameters related to neighbour selection, and rating predic-
tion formulas).

In this work, only the basic similarity metrics for determin-
ing user likeness are considered. The hybrid and combined
metrics that were introduced by recent research are not cur-
rently widely employed in CF approaches, and therefore, the
effectiveness of these metrics will be analysed in our future
work.

The remainder of the paper is ordered as follows: Sect. 2
overviews the related work. Section 3 presents the preliminar-
ies and methodology of the CF procedure, including the CF
user similarity metrics that are evaluated. Section 4 presents
the parameters and settings of the experiment (datasets, met-
rics, alternatives, etc.), as well as the assessment of the user
similarity metrics. Finally, Sect. 5 concludes the paper and
outlines the future work.
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2 Related work

CF algorithm accuracy is a very active research field, where
some of the research works are applied to dense CF datasets,
while others are applied to sparse CF datasets.

Regarding dense datasets, [21] introduces a CF technique
that identifies groups of objects related to each other, in order
to develop user-based local similarity models. This algorithm
combines rating normalisation with automatic object cluster-
ing, to develop a vicinity model for each cluster. In the work
reported in [21], the COS, the PCC, and the sigmoid function-
based sigmoid function-based PCC metrics are used, in order
to predict ratings from the MovieLens 100k old (100K rat-
ings by 943 users on 1682 movies, giving a sparsity level
of 93.7%), the MovieLens 1M (1,000,209 ratings by 6,040
users on 3,883 giving a sparsity level of 95.7%) and a subset
of the Netflix (sparsity 98.9%) datasets, while the prediction
error metrics used are the Root Mean Square Error (RMSE)

Z,N: | (pi—vi)? .
(computed as =y —, where N is the number of mea-

surements, v; is the real value for measurement i and p; the
corresponding prediction) and Mean Absolute Error (MAE)

(computed as M). The work in [22] introduces INH-
BP, a prognostic model that aims to improve the RecSys
accuracy. This model adjusts the predictor for each active
user by including an optimisation tool. A COS-based and a
PCC-based CF techniques are used to predict ratings from
the MovieLens Last (sparsity 98.3%) and the MovieLens
100K old (sparsity 93.7%) datasets, while the MAE is used as
the prediction error metric. [23] introduces ["'UICF, a hybrid
recommendation model which synthesises the gamma linear
regression model with user-based and item-based CF target-
ing at modelling the scalability and sparsity and issues of the
CF rating matrix. That work uses the COS and the PCC coeffi-
cient similarity metrics to predict ratings from the MovieLens
1M (sparsity 95.8%) and the MovieLens 100K old (spar-
sity 93.7%) datasets, while the prediction error metrics used
are the MAE and RMSE. [24] presents an item-based CF
method that combines the item-based prediction technique
with neighbour option strategy. First, that work proposes the
Kullback-Leibler divergence, and then, it loosens the rat-
ing prediction dependency to explicitly entered ratings only
and adjusts the rating prediction output. The experiments
reported in [24] consider the PCC, the Jaccard Similarity
Index, the mean absolute difference, the mean squared dif-
ference, the Adjusted COS similarity, and the Sigmoid PCC
similarity metrics for rating prediction computation. Each of
the metrics is used to generate predictions for the Movie-
Lens 1M (sparsity 95.8%) and the MovieLens 100K old
datasets (sparsity 93.7%), while the prediction error met-
rics used are the MAE, the RMSE, the rate of successful
predictions, and the F1-measure. The method introduced by
[25] assesses user-based CF and matrix factorisation, using

different dataset partitions, based on time, genre, and age,
and presented a new hybrid algorithm by integrating time,
genre, and age into the definition of the COS function. The
authors of [25] use the PCC, the Euclidean Similarity, the
COS Similarity, the Spearman Correlation Similarity, and
the Jaccard coefficient in order to predict ratings from the
MovieLens 100k (sparsity 93.7%) and the MovieLens 1M
(sparsity 95.8%). Concerning the accuracy of predictions,
this was quantified using the RMSE error metric.

Although all the previous works involve the use and
assessment of similarity metrics in CF algorithms, none of
them is applied to sparse CF datasets, where it is much
more difficult to find near and, therefore, reliable neighbours,
which may lead to lower rating prediction accuracy, in many
cases.

To this extent, the following research works belong to the
second category, i.e. introduce CF algorithms that are applied
(also) to sparse CF datasets. The work in [26] modifies the
Proximity—Impact—Popularity vicinity metric, computed as
the product of popularity, impact, and proximity values, by
normalising each component’s range into [0, 1], setting dif-
ferent weights to the aforementioned three components in
each scenario. Furthermore, this work develops a modified
prediction function which combines the user—user, the item—
item, as well as the weighted average deviations to enhance
the prediction accuracy. Eleven similarity metrics are used,
including the PCC, the Jaccard coefficient, and the COS.
That work also includes sparse datasets, such as the Epin-
ions (sparsity 99.986%) and the CiaoDVD (sparsity 99.91%).
[27] presents the CFVR algorithm which produces virtual
ratings based on the users’ real ratings and adds them to
the rating matrix to effectively mitigate the low sparsity
issue in sparse CF datasets. The PCC and the COS simi-
larity metrics are utilised, and the evaluation process also
includes sparse datasets, such as the Amazon’s Videogames
(sparsity 99.91%), the Digital Music (sparsity 99.7%), and
Amazon Movies and TV (sparsity 99.93%). The work in
[20] presents an algorithm that improves the PCC similar-
ity metric by eliminating the rating styles differences. The
algorithm uses the Bidirectional Encoder Representations
from Transformers model to mine users’ rating styles, and
subsequently, a technique that eliminates the differences of
users’ rating styles is applied. The PCC is used to quan-
tify user similarities and predict ratings from a pre-processed
dataset of the Amazon Movies and TV core5 (final sparsity
99.4%). [28] employs numerous vicinity metrics based on
both item—item and user—user to produce rating predictions
in CF datasets. Furthermore, they present an algorithm that
applies feature vectors to similarity interest values, derived
from the rating matrix, based on the number of personal inter-
ests, as well as the user—user rating interpersonal diffusion
behaviour. The CiaoDVD (sparsity 99.91%) is also among
the datasets used. The work in [29] introduces a method that
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includes a pre-processing step that assesses the trustworthi-
ness of rating predictions, and incorporates the ones deemed
as “trustworthy"” into the rating matrix, thereby resulting in
sparsity reduction and upgrades for both prediction cover-
age and quality in sparse CF datasets. This work employs the
COS and the PCC metrics. The CiaoDVD (sparsity 99.91%),
the Amazon Movies and TV core5 (sparsity 99.98%), and the
Amazon Videogames core5 (sparsity 99.95%) are among the
datasets used. The work in [30] presents an Improved Trian-
gle similarity metric that is complemented with the users
rating preference behaviour. The presented similarity met-
ric not only considers items commonly evaluated by pairs
of users, but also considers the ratings of products that are
not commonly evaluated. It uses eight user similarity met-
rics, including the COS, the Euclidean similarity, the Jaccard
Index, and the Constrained PCC. Among the datasets used
are also the CiaoDVD (sparsity 99.91%) and the Epinions
(sparsity 99.99%). All the aforementioned works listed for
the second category use the MAE and the RMSE as predic-
tion error metrics, while [26] and [30] also employ the F1
measure.

In the last five years, a number of research works focusing
on evaluation reviews of CF user similarity metrics have been
published; however, they mainly utilise high density datasets.
More specifically, [31] presents an evaluation review of 13
user similarity metrics, using one NN formulation method,
two rating prediction formulas, and three prediction error
metrics on three datasets (MovieLens 100k, MovieLens 1 M,
and Jester), which are of relatively high density (density >
4.2%). [32] presents an evaluation review of 33 user simi-
larity metrics (including hybrid and combined ones) using
one NN formulation method, one rating prediction formula,
and three prediction error metrics on two datasets (Movie-
Lens 100k and MovieLens 1 M), which are of high density.
[33] presents an evaluation review of 29 user similarity
metrics (including hybrid and combined ones) using one
NN formulation method, one rating prediction formula, and
four prediction error metrics on three datasets (Film Trust,
Movielens-100K, Movielens- 1 M). While the datasets are of
relatively high density, the authors of this work present exper-
iments where subsets of the datasets are used for training,
simulating thus a sparse dataset, with the training portion of
the simulated datasets exhibiting sparsity up to 99.6%. How-
ever, this sparsity level lags behind the corresponding levels
of natively sparse datasets, which typically exceeds 99.9%.
Furthermore, the authors point out that in their experiments,
higher training dataset sizes are correlated with higher rating
prediction accuracy.

An interesting approach is taken in works [34, 35], which
aim to promote the understanding of regularities that are
inherent within the data, allowing to assess the feasibility
and achievability of attaining a specified level of accuracy.
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This will facilitate goal setting in recommender systems and
direct algorithm planning before their implementation.

Notably, similarity evaluation metrics are assessed and
compared in other domains and contexts too, such as link
prediction [36, 37]. [38] presents an evaluation review of 7
user similarity metrics, using one NN formulation method,
one rating prediction formula and two prediction error met-
ric on one dataset. However, the dataset is both artificial and
dense, while it is additionally severely limited in size. The
work in [39] presents an evaluation review of 4 user simi-
larity metrics using one NN formulation method, one rating
prediction formula, and two prediction error metrics on 2
datasets (MovieLens 100K and FilmTrust datasets), which
are, however, of high density. An overview of the aforemen-
tioned works that focus on the evaluation of CF similarity
metrics is found in Table 1.

Considering the above, there is a research gap for an
extensive comparative evaluation of similarity metrics in
the context of natively sparse datasets. Sparse CF datasets,
which are common in both the industry and the research
domains, encounter lower rating prediction accuracy, since
it is much harder to find close and, hence, reliable NNs [29,
40, 41]. Therefore, the selection of a more efficient simi-
larity metric is bound to have a considerable effect on the
overall performance of the RecSys. A comparative evalua-
tion would provide a comprehensive coverage of different
similarity metrics used in CF and take into account multi-
ple accuracy quantification metrics, NN selection methods,
and rating prediction calculation formulas. Finally, multi-
ple natively sparse datasets from diverse domains should be
utilised. In this paper, we present a study that aims to fill this
this gap, and highlight the most effective user similarity met-
ric(s) in sparse CF datasets. This would aid researchers and
practitioners alike to tune their RecSys by selecting the most
appropriate similarity metric, achieving thus more accurate
predictions, which in turn lead to more successful recom-
mendations [42, 43]. For e-commerce systems in particular,
successful recommendations are critical, since they consti-
tute an important determinant of user satisfaction [44, 45].

3 Preliminaries and Methodology

In CF, before implementing a rating prediction process,
designers have to take three major decisions [10, 31]:

1. the similarity metric they want to use;

2. the criteria that will be applied for determining the NN's
for users; and

3. the formula that will be used to calculate the prediction
numeric value.
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Table 1 Comparison with recent (last 5 years) review works of CF metric evaluation

Ref # metrics # datasets # item NN form. # Pred. comp. # Pred. error
(# sparse) domains methods formulas metrics
[31] 13 3(0) 2 top-K Weighted sum, MAE (NMAE),
(Movies, Jokes) Mean-centred RMSE, R?
[32] 33 2 (0) 1 top-K Mean-centred MAE, RMSE
(incl. hybrid) (Movies) and F1
[33] 29 3(3) 1 top-K Weighted sum MAE, RMSE,
(incl. combined) (Movies) R, Fl
[38] 7 1(0) 0 top-K Weighted sum MAE
(artificial)
[39] 4 2(0) 1 top-K with Weighted sum MAE,
(Movies) clustering within-cluster
Presented work 15 10 (10) 8 (Movies & Series, thresholded, Weighted sum and MAE (NMAE),
Books, Videogames and top-K Mean-centred RMSE, F1

Cell Phones and
Accessories, DVDs

Kindle Store

Digital Music

Musical Instruments)

This work focuses on the evaluation of the effectiveness
of similarity metrics and therefore considers the most widely
used options for the first factor. However, since existing
research has provided evidence that the overall CF algorithm
effectiveness is influenced by the interplay between all three
factors, in this work we also take into account the most widely
used techniques for the other two decisions in CF research,
exploring the effectiveness of all possible combinations of
the selected factor instantiations.

More specifically, in regard to the NN selection criteria
(decision 2), this work tests both the top-k approach (for
each active user, the k-nearest users are pre-selected as NNs)
and the similarity threshold approach (for each active user,
the users whose similarities exceed this threshold are pre-
selected as NNs). In regard to the rating prediction calculation
formula (decision 3), both the mean-centred formula and the
weighted sum method are tested. As a result, since this work
tests all the combinations of the aforementioned alternatives,
aholistic view of the user similarity metric (decision 1) effec-
tiveness is obtained.

In the following subsections, the process of the rating pre-
diction formulation will be analysed, for self-containment
purposes, along with the 15 user similarity metrics which
will be evaluated.

3.1 CF user similarity metrics

In CF, numerous metrics are available to quantify the similar-
ity among a pair of users. Recent research works commonly

utilise the COS (or Vector) Similarity and the PCC. This
paper evaluates 15 CF user similarity metrics as follows: (1)
the Jaccard Index [46], (2) the Manhattan (or taxicab or city
blocks) distance [47], (3) the Euclidean distance [43], (4)
the Chebyshev distance [48], (5) the PCC [49], (6) the Con-
strained PCC [50], (7) the Sigmoid PCC [33], (8) the Vector
or COS similarity [49], (9) the Adjusted COS [31], (10) the
Spearman rank correlation [51], (11) the Kendall’s Tau corre-
lation [31], (12) the Mean Square Difference-based similarity
[52], (13) the Normalised Sum of Multiplications [33], (14)
the Adjusted Rand Index [53], and (15) the Adjusted Mutual
Information [54].

The selection of the similarity metrics was initially seeded
by five recent surveys that evaluated similarity metrics [31—
33, 38, 39], and was further verified by searching the Scopus
database for works that are more recent than the surveys and
introduce new metrics for use in collaborative filtering, using
the query
TITLE-ABS-KEY(“collaborative filtering”) AND TITLE-
ABS-KEY( “similarity metric”) AND PUBYEAR > 2021
In this search, no new metrics were identified (Table 2).

The similarity metrics are briefly overviewed in the fol-
lowing subsections. The notations used in the definitions and
formulas of the similarity metrics are presented in Table 3.

3.1.1 Jaccard Index

The Jaccard Index (JACC) between two CF users U and V is
defined as the ratio between the intersection of their common
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Table 2 Similarity measures considered in recent surveys [31-33, 38, 39]

Similarity metric Fkih [31] Khojamli [32] Amer [33] Jain [38] Bojorque [39]
Jaccard v v v v v
Manhattan v v v
Euclidean v v v v
Chebyshev v
Pearson v v v v v
Constrained Pearson v v
Sigmoid Pearson v v
Cosine v v v v
Adjusted cosine v v
Spearman rank v v v
Kendall’s Tau v
Mean square difference v v v
Normalised sum of multiplications v
Adjusted Rand index v
Adjusted mutual information v
ls::):esi?nil]\;:‘)itf;ir?:;rlilcsfd in the Notation Description
ry.i The numeric rating user U has given to item i
T The average value of all ratings entered for item i
ru The average value of all ratings entered by user U
Iy The set of items user U has rated
[Ty The cardinality of [y, i.e. the number of items user U has rated
Iy.v The set of items both users U and V have rated (i.e. their intersection)
Rank(ry ;) The rank of item i in U’s rating set (when sorting all items
rated by user U in descending rating value order)
range The range of the rating scale
(i.e. maximum rating value - minimum rating value)
Fmed The median value in the rating scale
NU The number of users in the dataset
TNR The total number of ratings in the dataset
ANRU The average number of ratings per user, i.e. TNLJ

evaluated items and the union of their evaluated items, as
shown in formula 1:

[y,vl

JACCWU,V)= ————
[{y U ly|

ey

The range of this metric is [0, 1], where higher values
signify higher similarity between the two users. The Jaccard
Index takes into account only interactions with the items,
whereas it does not consider whether items have been rated
favourably or not [55].

The computational complexity of the JACC metric
between two users U and V is O(|Iy| + |Iy]), assuming
an efficient implementation where set unions and intersec-
tions are computed using a hash set implementation, in
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which lookups are performed at a cost of O(1). The com-
plexity of computing the JACC metric for all user pairs is
O(NU? %« ANRU).

3.1.2 Manhattan Index

The Manhattan distance (MANH) between two users U and
V (also known as the taxicab distance and city blocks dis-
tance) considers the 1-norm (i.e. the aggregate of the absolute
value of differences) of the ratings of these users on the same
items, as depicted in formula 2; this measure is subsequently
normalised using formula 3, to compute the MANH similar-
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ity metric [47].

d_MANHWU.V)= Y |ryi—rv.l 2
ielyy

1
MANHU,V) = 3
l+d MANH(U,V)

The range of this metric is [0, 1], where higher values
signify higher similarity between the two users.

The computational complexity of the MANH metric
between two users U and V is O(|Iy| 4 |Iy|), correspond-
ing to the computation of the set of commonly rated items.
Then this set, whose cardinality is less than |Iy| + |Iy] is
iterated upon to compute d_M AN H, which is subsequently
used to compute M AN H. The complexity of computing the
M AN H metric for all user pairs is O(NU? x ANRU).

3.1.3 Euclidean Index

The Euclidean distance (EUCL) between two users U and
V considers the square root of the 2-norm (i.e. the sum of
squares of the differences) of the ratings of these users on the
same items, as depicted in formula 4.

d_EUCL(U,V) =\/ > v —rv.i)? 4)

iEIU,V

The result of formula 4 is subsequently normalised using
formula 5 to compute the EUCL CF similarity metric.

1
EUCL(U,V) = 5
. v 14+d_EUCL(U,V) )

‘We can observe that, while the Manhattan distance treats
all the deviations equally, the Euclidean distance penalises
the greater ones more severely. The range of this metric is also
[0, 1], where higher values signify higher similarity between
the two users [43].

The complexity of computing the £U C L metric between
two users U and V is O(|Iy| + |Iy]), corresponding to the
computation of the set of commonly rated items. Then the
set, whose cardinality is less than | Iy7| 4 | Iy | is iterated upon
tocompute d_EUCL. Finally,d_EUCL is used to compute
EUCL. The complexity of computing the EU C L metric for
all user pairs is O(NU2 * ANRU).

3.1.4 Chebyshev Index

The Chebyshev distance (CHEB) between two users U and
V considers the infinity norm (also known as the maximum
norm), which is equal to the maximum difference between
the ratings of the common evaluated items, as depicted in

formula 6.

d_CHEB(U,V)= max |ry; —rvy.il 6)

l‘EIU,V

Formula 6 is then normalised using equation 7 to compute
the CHEB CF similarity metric [48].

1
CHEB(U,V) = (7
14+d_CHEB(U,V)

The computational complexity of the C H EB metric is
O(|Iy| + |1y]), corresponding to the computation of the set
of commonly rated items. Then this set, whose cardinality is
less than |1y | + |1y | is iterated upon to compute d_C HEB.
Finally, d_CHEB is used to compute C H EB. The com-
plexity of computing the C H E B metric for all user pairs is
O(NU? %« ANRU).

3.1.5 Pearson Correlation Coefficient

The PCC between two users U and V is probably the most
commonly used similarity formula in CF, used by numerous
research works that propose and evaluate CF algorithms [25,
56, 57]. It measures the linear correlation of U’s and V’s
rating sets, while it is computed as shown in formula 8.

Y (yi—ry)x v, —ry)
ielyy

/ ) (VU,i_rZ/)Z*\/ > Gvi—rv)?

iEIU,V iEIU,V

PCC(U,V) =

®)

The range of this metric is [-1, 1], where higher values
signify higher similarity between the two users [42].

In order to compute the PCC metric between two users
U and V, the mean rating value for each of the users
needs to be first computed. The complexity of this opera-
tionis O (|Iy|) + O(|1y]). Afterwards, the set of commonly
rated items is determined. The complexity of this task is
O(|Iy|+|1v]). Finally, this set (whose cardinality is less than
[Iy| + |Iy]) is iterated upon to compute the numerator and
the two factors in the denominator of the fraction in formula
8. Therefore, the complexity of this task is O(|Iy| + |Iv]).
The complexity of computing the PCC metric for all user
pairs is O(NU? « AN RU), while notably the mean rating
for each user can be computed only once and stored for
further perusal, delivering a more efficient implementation.
Nevertheless, this optimisation does not reduce the overall
complexity, since this is dominated by the computation of
commonly rated items between each user pair.
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3.1.6 Constrained Pearson Correlation Coefficient

The constrained PCC (CPCC) is a variant of the PCC. It is
differentiated from the original PCC, through the replace-
ment of the average value of all ratings entered by each user
ry and ry, in the numerator, by the median value in the rating
scale (ryeq), as shown in formula 9.

CPCCU,V)
Z (rU,i — T'med) * (rV,i — T'med)
. ielyy
Z (rU,i - rmed)2 * Z (rV,i - rmed)2
ielyy ielyy

©))

The range of this metric is [-1, 1], where higher values
signify higher similarity between the two users [50].

In order to compute the C P C C metric between two users
U and V, the median of all ratings needs to be firstly com-
puted. The complexity of this taskis O (T N R) [58],1.e. linear
in relation to 7N R, which is the set over which the median
is computed. Subsequently, the commonly rated items of the
two users are determined, and this set is iterated upon to cal-
culate the nominator and the factors in the denominator of
equation 9. Thus, the overall complexity of the C PCC met-
ric computation between two users is O (T N R), since T NR
dominates the sum of the number of ratings of the two users.
In order to compute the C PCC metric for all user pairs,
the median of all ratings is initially computed only once.
Subsequently, for each user pair computations of complexity
O(|Iy| + |Iy|) need to be performed. Therefore, the overall
complexity is O(NU? * ANRU + T NR). However, since
TNR = nx ANRU, the overall complexity is reduced to
O(NU? %« ANRU).

3.1.7 Sigmoid Pearson Correlation Coefficient

The Sigmoid PCC (SPCC) is another variant of the PCC,
which augments the similarity between users who share a lot
of common rated items, as shown in formula 10.

SPCC(U,V)=PCC(U,V)=x*
1+e

(10)

y,vl
T2

The range of this metric is [-1, 1], where higher values
signify higher similarity between the two users [33].

The computation of the S P CC metric requires the value
of the PCC, which dominates the computational complex-
ity. Therefore, the overall computational complexity of the
SPCC metricis O(NU? % ANRU).

@ Springer

3.1.8 Vector or Cosine similarity

The COS or Vector Similarity is a very frequently used CF
similarity metric [49, 59, 60]. It is derived from the Euclidean
dot product formula of the two user rating vectors. It is cal-
culated as depicted in formula 11.

Y Ui *TV.
ielyy
cCoS(U,V) = '2 > (11)
> Ty, * > Ty i
ielyy ielyy

In general, the range of the COS is [-1, 1], and higher
values signify higher similarity between the two users. For
datasets having non-negative rating values, such as the ones
used in our experimental evaluation, the range of this metric
is [0, 1].

In order to compute the C O S metric between two users
U and V, the set of commonly rated items need to be deter-
mined. The complexity of this operation is O (|Iy| + |Iv]).
Subsequently this set, whose cardinality is less than |Iy| +
|1y | is iterated upon to compute the nominator and the factors
in the denominator of Eq. 11. Therefore, the complexity of
the overall computation is O (|Iy| + |Iy]). In order to com-
pute the C O S metric for all user pairs, the related complexity
is O(NU?* ANRU).

3.1.9 Adjusted Cosine measure

The Adjusted Cosine measure (ACOS) is a variant of the
COS. It differentiates from the original COS because it
normalises all the rating values by item, as depicted in for-
mula 12.

Y (rui—ri)x(ry,; — i)

iEIva

> Gy — )P

ielyy

ACOS(U, V) = X =
Py, = Ti

ielyy

(12)

The range of this metric is [-1, 1], where higher values
signify higher similarity between the two users [31].

The computation of the AC O S metric requires the compu-
tation of the means of ratings for each item. The complexity
of this task is O (T N R), where T N R is the overall number
of ratings. Then, for each pair of users U and V the set of
commonly rated items needs to be computed, and the com-
plexity of this computation is O (|Iy| + |Iy|). Considering
that the means of ratings for each item is calculated only once,
computation of the AC O S metric for all user pairs has an
overall complexity of O(T NR)+ O(NU?+ANRU). How-
ever, since TNR = NU x AN RU, the overall complexity is
reduced to O(NU? % ANRU).
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3.1.10 Spearman rank correlation

The Spearman rank correlation (SP) metric between two sets
of users’ co-rated items computes the monotonic relationship
of the aforementioned sets and is considered as the PCC
between the rank variables. To compute the value of SP, the
ratings of each user U are ordered in descending order, and
the first (i.e. the highest ranked) one is assigned the rank 1,
the next one is assigned the rank 2, etc. In the event of a tie,
all identical ratings by the same user are assigned the same
rank. When all rating values entered by the same user are
distinct (i.e. a total ordering exists for rating values entered
by the same user), SP is calculated using formula 13. In the
general case where duplicate values for ratings may exist, SP
is calculated using formula (14). In formula 14, Ry and Ry
designate the ratings of the commonly rated items by these
users, after these ratings have been converted to ranks, and
o (Ry) designates the standard deviation of rank variable R, .

6% Y (Rank(ry ;) — Rank(ry;))

I'GIU’V

SPU,V)=1-—
[y, vIx(Iyv|=1)

(13)
_ covariance(Ry, Ry)
SO = Ry w0 (Ry) (o

The range of this metric is [-1, 1], where higher values
signify higher similarity between the two users [51].

The complexity of computing the S P metric for two users
U and V is O(RlogR) [61], where R is the number of ele-
ments in both sets (i.e. equal to |Iy| + |Iy]). In order to
compute the SP metric for all user pairs, the related com-
plexity is O(NU? * ANRU xlog(ANRU)).

3.1.11 Kendall's Tau correlation

The Kendall’s Tau correlation (TAU) counts the number of
pairwise disagreements between the two ranking user sets.
The larger the distance, the more dissimilar the two lists are
[31]. Itis found that the number of swaps that the bubble-sort
algorithm needs to place user U’s rating list in the same order
as user V’s rating list is equivalent to the TAU distance. Due
to this fact, the TAU is also called the "bubble sort distance".
It is calculated using formula 15:

c+d
TAUWU,V)=—— (15)

c—d
where ¢ is the number of the concordant rating pairs
between the two user rating sets and d is the number of
the discordant rating pairs between the two user rating sets.
Two rating pairs (ry ;, ru,;) and (rv ;, ry, ;) are considered
concordant, iff, after converting ratings to rankings, both
elements are either greater than, equal to, or less than the

corresponding elements of the other pair. This is expressed
formally in equation 16.

(rank(ry i) > rank(ry j) A rank(ry ;) > rank(ry ;))Vv
(rank(ry ;) = rank(ry_j) A rank(ry ;) = rank(ry j))v (16)

(rank(ry ;) < rank(ry ;) A rank(ry;) < rank(ry ;))

Rating pairs that are not concordant are termed as discor-
dant. The range of this metric is [-1, 1], where higher values
signify higher similarity between the two users.

The computational complexity for computing the 7T AU
metric between two users U and V is O(R log R), where R
is the number of individuals in both sets (i.e. equal to | Iy | +
[Iy]). In order to compute the AU metric for all user pairs,
the related complexity is O(NU2 * ANRU xlog(ANRU)).

3.1.12 Mean square difference-based similarity

The mean square difference-based similarity (MSD) puts
more emphasis on major rather than minor differences. It
is calculated by squaring the difference of the commonly
evaluated item ratings and then dividing the sum of the afore-
mentioned squares by the square of the range of the rating
scale (maximum rating value — minimum rating value) mul-
tiplied by the user commonly evaluated item quantity [33],
as shown in formula 17:

2
> (rui—rv.i)
l’EIU,V

d_MSD(U,V) =

17
(range)? x |1y v | (an

The distance metric is then used to compute the similarity
metric, using formula 18.

MSDWU,V)=1—-d_MSD(U, V) (18)

The range of this metric is [0, 1], where higher values
signify higher similarity between the two users [52, 62].

In order to compute the M S D metric between two users
U and V, the set of commonly rated items by both users
needs to be computed; the relevant computation for this task
is O(|Iy| + |Iv]). This set is subsequently iterated upon to
compute the nominator, while the computation of the denom-
inator is of complexity O(1). To calculate M S D metrics for
all user pairs, the relevant complexity is O (NU? « ANRU).

3.1.13 Normalised Sum of Multiplications

The Normalised Sum of Multiplications (NSM) shares the
same numerator with the COS formula. However, its denom-
inator is the sum of the squares of the maximum ratings given
to each individual item by the two users, as shown in for-
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mula 19.
Z ry,i xrv
l’EIU,V
NSMU,V) = 5 3 (19)
Y. max(ry .1y ;)
ieIU,V ’ ’

In general, the range of the NSM metric is [-1, 1] and
higher values signify higher similarity between the two users.
For datasets having non-negative rating values only, such as
the ones used in our experimental evaluation, the range of
this metric is [0, 1] [33].

In order to compute the N SM metric between two users
U and V, the set of commonly rated items by both users
needs to be computed. The relevant computation for this task
is O(|Iy| + |Iv]). This set is subsequently iterated upon to
compute the nominator, while the computation of the denom-
inator is also of linear complexity O(|Iy|) + O(|Iv|). To
calculate N SM metrics for all user pairs, the relevant com-
plexity is O (NU? % AN RU). Notably, the maximum rating
for each user needs to be computed only once; however, this
does not reduce the complexity, because it is dominated by
the computation of commonly rated items.

3.1.14 Adjusted Rand Index

The Adjusted Rand Index (ARI) is a similarity metric
between two data clusterings. ARI takes into account the
fact that some agreement between two clusterings can occur
by chance, and it adjusts the Rand Index (the basic mea-
sure of similarity) to account for this possibility [53]. In the
domain of CF, for each two users U, V their ratings on com-
monly reviewed items [y y are extracted, and afterwards
each user’s ratings on these items are clustered separately
forming two clusterings Cy= {cy,1, cv2...., cu.m} and
Cyv={cy,1,cv2,..., cv ). Each data point set cx ; includes
ratings by user X (either U or V) that share the same rating
value. Afterwards, the similarity between the two clusterings
is quantified. ARI is calculated using formula 20:

RI(U,V)— E{RI(U,V)}
max(RI(U), RI(V)) — E{RI(U, V)}
(20)

ARI(U,V) =

where RI is the Rand Index metric and E{RI(U,V)} is the
expected Rand index between the two clusters U and V. The
range of this metric is [-1, 1], where higher values signify
higher similarity between the two users.

The complexity for computing the ARI metric for a pair
ofusers U and V is O(R+ K L), where K and L are the sizes
of the two clusterings to be compared and R is the number of
individuals in both sets [63]. Since the elements are values
and one cluster is formed for each distinct value, K and L
have an upper bound of range; therefore, the complexity
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for computing the ARI metric for a pair of users U and
Vis O((|Iy| + |Iv]) + rangez). In order to compute the
ARI metric for all pairs of users, the related complexity is
O(NU? %« (ANRU + range?)).

3.1.15 Adjusted Mutual Information

The Adjusted Mutual Information (AMI) metric is based on
the Mutual Information (MI) metric, which is widely used
in the information theory research subject. AMI calculates
the statistical correlation between a pair of users U and V as
shown in formula 21.

ARIU. V) — MI(U,V)— E{MIU,V)) o
max(HU), H(V)) — E{M1(U, V)}

where E{MI(U,V)} is the expected MI and H(U) and H(V)
are the entropies of these two users, respectively. The range
of the AMI metric is [-1, 1], where higher values signify
higher similarity between the two users [54].

The complexity of computing the AM I metric for a pair
of users U and V is O (max(k,[)R) [64], where:

e R is the total number of items in both compared cluster-
ings (i.e. equal to O (|Iy| + |Iv]))

e k, [ are the number of clusters in the two sets. Since the
elements of both clusterings are ratings and a distinct
cluster is formed for each rating value, the maximum
number of clusters is equal to range.

Considering the above, the complexity of computing the
AM I metric for a pairof users U and V is O (range = (|Iy |+
[Iy])). In order to compute the AM I metric for all pairs of
users, the related complexity is O(NU? s range x ANRU).

3.1.16 Summary of metrics

In Table 4, we present a brief summary of the metrics,
discussing aspects according to their design rationale and
functionality. Their performance in the context of recom-
mender systems operating on sparse datasets is discussed in
Sect. 4.

3.2 NN selection

For the selection of the set of NNs of a user U, two methods
are proposed in the literature:

1. the similarity (or correlation) threshold: the algorithm
uses as NNs the users V for which the similarity values
with U surpass a pre-selected threshold THR [65, 66];
and
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Table4 Summary of similarity metrics

Similarity metric

Complexity

Notes

Jaccard
Manhattan

Euclidean
Chebyshev

Pearson

Constrained
Pearson

Sigmoid Pearson

Cosine

Adjusted cosine

Spearman rank

Kendall’s Tau

Mean square dif-
ference

Normalised sum
of multiplications

Adjusted Rand
index

Adjusted mutual
information

O(NU? % ANRU)
O(NU? %« ANRU)

O(NU? % ANRU)
O(NU% % ANRU)

O(NU? %« ANRU)

O(NU? % ANRU)

O(NU? % ANRU)

O(NU?% % ANRU)

O(NU?% % ANRU)

O(NU? % ANRU %log(ANRU))

O(NU? %« ANRU % log(ANRU))
O(NU? %« ANRU)

O(NU? % ANRU)

O(NU? % (ANRU + range?))

O(NU2 s« range * ANRU)

Captures only co-rating of items, not rating preferences

Users with many commonly rating items are bound to have lower
similarities, since the metric is not amortised according to the
number of considered ratings. The MANH and EUCL metrics
are also sensitive to the rating scale.

Considers only the maximum distance of ratings, which may not
be representative of the users’ rating behaviour

May favour users with high rating variance; additionally it
exhibits sensitivity to outliers (few extreme ratings may exces-
sively affect the similarity metric value)

Demoted personalisation compared to PCC due to the use of the
global rating median instead of the personal rating average. The
metric is also sensitive to outliers

The use of the Sigmoid function increases the density of val-
ues towards the scale middle, therefore blurring differences that
may be of high discriminating value. It introduces the need to
configure the slope of the sigmoid function, which considerably
affects performance. A single slope is used for all users, therefore
individual rating biases may not be captured appropriately

Disregards the magnitude of the ratings, as well as differences in
uses of the rating scale by individual users (lenient vs. strict), only
considering angles. If only a few common ratings exist, small
divergencies in ratings may lead to disproportionate variations
in the result

Tackles some issues present in COS, at the expense of additional
computational load. For users with small rating variances, the
metric may underestimate the actual similarity

Spearman rank and Kendall’s Tau disregard absolute values in
favour of rankings. If only a few common ratings exist, small
divergencies in ratings may lead to disproportionate variations
in the result. Both metrics incur higher computing overhead.

Does not adjust according to personal rating biases, therefore
user rating strictness/leniency is not amortised. The importance
of large differences are overemphasised, reducing similarities
excessively

Does not adequately handle different rating practices, therefore
users having highly similar rating patterns but different degrees
of strictness/leniency will be assigned low similarity values

The ARI and AMI metrics consider only rating clusterings
disregarding actual values, therefore clusters corresponding to
different rating values may be matched. The magnitude of rating
differences is also not taken into account, due to the adoption
of a binary logic examining the presence or not of an item in a
cluster. Both metrics incur higher computational load.

2. the KNNs: the algorithm uses as NN the K users found

In this work, we use both methods. Regarding the

to have the highest similarity values with the active user
[67, 68].

threshold-based method, we conduct experiments with three
settings, THR = 0.0, THR = 0.25, and THR = 0.5.
The reason behind this option is that, as shown in the pre-
vious subsection, the similarity metrics have divergent value
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ranges (some have a range of [0,1], while others have a range
of [—1, 1]). Thus, we strive to cover all the instances. In regard
to the KNNs method, we conduct experiments with two set-
tings, K = 250 and K = 500, following the selection of K
in related works [22, 31, 68] and given the fact that in (very)
sparse datasets higher numbers of K are needed in order to
achieve satisfactory coverage, considering that—due to high
sparsity—each of the NNs can only contribute towards the
rating prediction of few items only.

3.3 Rating prediction value formulation

The most popular and widely used functions to formulate the
rating prediction value in the literature are the weighted sum
function and the mean-centred prediction function [69-72].
In more detail:

1. the weighted sum function, where in order to predict the
rating py,; that a user U would assign to item i, the
ratings on U’s NN for item i are considered, with each
V’s rating (V € NN(U)) weighted according to the U-V
similarity. The U-V similarity value (or vicinity value) is
derived from the similarity method used (c.f. Sect. 3.1).
This is formally expressed in formula 22:

> sim(U,V)xry;
VeNNy

puU,i = Z

VeNNy

sim(U, V) 22)

2. the mean-centred prediction function, which extends the
weighted sum function by compensating for divergent
rating practices employed by different users, i.e. the fact
that some users assign ratings more strictly while oth-
ers are more lenient. This is achieved by subtracting the
mean of the corresponding NN’s rating from each NN’s
rating. The outcome of this calculation is then adjusted
by the mean rating value of the target user U, to pro-
duce the final rating prediction numeric value. This is
formally expressed in formula 23:

§ sim(U,V)x(ry; —ry)
— VeNNy
- 23
pu.i=ru S sim(U, V) @3)

VeNNy

In this work, we use both rating prediction formulation
functions.
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4 Experimental settings, evaluation, and
results

In this section, we evaluate the 15 similarity metrics, pre-
sented in Sect. 3.1, primarily in regard to rating prediction
accuracy and secondarily in regard to rating prediction cov-
erage (i.e. the percentage of rating predictions that the CF
algorithm is able to calculate). In regard to prediction accu-
racy, we consider the three most used ones in CF prediction
research, the Fl1-measure, the RMSE, and the MAE. The
main difference between the latter two rating prediction error
metrics is that the MAE treats all divergences uniformly,
while the RMSE penalises the larger ones harsher. For the F1-
measure, we adopt the approach followed by numerous works
including [19, 73], where the recommendation for a user U
includes all items for which the prediction value is included
within the upper 30% of the rating scale. For the 9 datasets
that have aratings range of [0, 5], the rating prediction thresh-
old for an item to be included in the recommendation is
3.5. The respective threshold for the book-crossing dataset,
whose rating range of [0, 10], is 7.

Our work focuses on 10 sparse CF datasets. As noted in
Sect. 1, a dataset is considered very sparse if % <
1% [16]. The datasets used in our work, along with their
attributes, are summarised in Table 5. Their sparsity spans
from 99.76% (sparse dataset) to 99.997% (highly-sparse
dataset). Their inclusion ensures that all the levels of spar-
sity are considered in our experimentation. Furthermore, we
diversify the dataset sources, utilising datasets from Amazon,
Yahoo, Epinions.com, and others. To ensure that the evalu-
ation is not biased by the item domain, the selected datasets
span across several product fields, from Music and Movies,
to Books and Videogames.

In the following subsections, we firstly analyse the settings
of the experiment, while subsequently we present and discuss
the evaluation results.

4.1 Experimental settings and procedure

For each dataset, we follow the 10-fold cross-validation pro-
cess [74, 75], where the original dataset is split into 10 folds,
and each time the training set is derived from the union of
the 9 folds, while the test set is the remaining 1 fold. After
all 10 iterations are performed, the 10 prediction results are
merged. From each dataset, only the tuple <user_id, item_id,
numeric_rating> is used. Any additional information that
may be available in the dataset, such as user demographic
information, item product category, item features (e.g. price,
condition, etc.), rating reviews, user relations (e.g. social),
and others is disregarded. This is to ensure that (a) results
are not affected by the introduction of other methods and
algorithms or specialised techniques and (b) the results are
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Table 5 Datasets used in the
experiments

Dataset Name Sparsity #users #items #ratings Ratings range
R4-Yahoo! Movies! 99.76% 8K 12K 221K 1-5
Book-crossing (books)? 99.997% 105K 341K M 0-10
Amazon VideoGames> 99.951% 17K 55K 473K 1-5
Amazon CellPhones 99.985% 48K 157K 1.1IM 1-5
and Accessories’

Amazon Movies and TV3 99.982% 60K 298K 3.3M 1-5
Amazon Kindle Store3 99.984% 99K 140K 2.2M 1-5
Amazon Digital Music? 99.926% 12K 17K 145K 1-5
Amazon Musical Instruments? 99.925% 11K 28K 219K 1-5
Epinions (general 99.986% 22K 296K 922K 1-5
consumer reviews)*

CiaoDVD (DVDs)’ 99.91% 2K 17K 36K 1-5

Thttps://webscope.sandbox.yahoo.com/catalog.php?datatype=r
somnambwl/bookcrossing-dataset

Zhttps://www.kaggle.com/datasets/

3https://nijianmo.github.io/amazon/index.html ~ *https:/www.kaggle.

com/datasets/masoud3/epinions-trust-network >https://www.cse.msu.edu/~tangjili/datasetcode/truststudy.

htm

generalisable for all cases, since these data are utilised by
every CF-based RecSys.

Within each iteration, the vicinities of all pairs of users are
computed, utilising all the 15 similarity metrics analysed in
the previous section. For the majority of the 15 metrics, it suf-
fices to have 1 co-rated item between two users, to calculate
their similarity. However, for some metrics, the calculation
of the similarity requires at least two co-rated items, due to
the mathematical structure of the respective formula (e.g. SP
includes the standard deviation in the denominator, which
requires at least two values in order to be calculated). Fur-
thermore, some of the similarity metrics, such as the TAU,
return the value of 1.0 (the highest value in the metric range)
when only one co-rated item exists between the two users. As
a result, in order (a) to overcome the aforementioned issue
and (b) to ensure fairness among the 15 metrics in the con-
text of the experiment, only users with at least 2 co-rated
items are considered as potential NNs. The examination of
different threshold values for the co-rated item quantity in
the stage of NN selection is considered as part of our future
work. Lastly, to ensure the reliability of the results, the base-
line comparison is on the same 10 datasets, with the same
parameter alternatives and settings for all 15 metrics tested
in this work.

4.2 Evaluation

In this subsection, we report on the results of our experiments,
aiming to evaluate the 15 user similarity metrics, primarily in
regard to rating prediction accuracy and secondarily in regard
to rating prediction coverage. The presentation of the results
is organised into two parts, based on the NN selection phase.
The first part reports on the results obtained when NNs are

selected using the similarity threshold, and the second part
reports on the results obtained when NN are selected using
the KNN method.

Within each part, results concerning the use of both func-
tions for the rating prediction value formulation phase (the
mean-centred prediction function and the weighted sum
function) are presented. For conciseness, only the averaged
results over all ten datasets are presented for each setting.
The detailed results are available at [76].

Lastly, we aggregate the results and we present and dis-
cuss the overall evaluation outcome. The prediction errors
observed for the Book-crossing dataset are normalised (due
to its increased range, compared to the other 9 datasets),
according to the Normalised Mean Absolute Error (NMAE)
[77], before computing the datasets’ averages.

4.2.1 Evaluation with NN selection using a neighbour
similarity threshold

Figure 1 illustrates the average rating prediction MAE
observed for the 15 similarity metrics tested in this paper,
using the 10 sparse datasets presented in the beginning of
the section, when setting the neighbour similarity threshold
THR = 0.0. The SP metric achieved the lowest average
MAE, among all 15 metrics with 0.63 and 0.64, when the
mean-centred and the weighted sum prediction functions are
used, respectively. At the dataset level, the SP scored the
lower MAE in five and three out of 10 datasets, respectively.
For the most of the rest of the datasets, it achieved the 2nd
best MAE score. Low MAE scores are also achieved by the
JACC, the ARI and the ACOS.

In Fig. 2, we can notice that the optimal average RMSE
is again accomplished by the SP matric, with a score of 0.98
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and 1.05, when the mean-centred and the weighted sum pre-
diction functions are used, respectively, having the lowest
RMSE score in five and three, respectively, out of 10 datasets.
Very good RMSE results are also achieved by the ACOS, the
CPCC, and the JACC.

Considering the F1-measure, the higher scores in both the
prediction functions were found to have the ACOS, followed
by the NSM and the SP (c.f. Fig. 3). For the mean-centred-
based prediction calculation, F1 scores are very similar for
all metrics, ranging from 0.831 to 0.836 (the highest value is
0.6% larger than the lowest one). For the weighted sum-based
prediction calculation, F1 scores exhibit higher variations
ranging from 0.811 to 0.827 (the highest value is 2% larger
than the lowest one).

Regarding the rating prediction coverage, the majority of
the metrics have satisfactory results, taking into considera-
tion the high sparsity of the datasets, ranging from 31% (for
the ARI) to 51% (for the EUCL and the CHEB).

Figures 4, 5 and 6 illustrates the effectiveness of similarity
metrics when the THR increases at 0.25. The JACC presented
a very low prediction coverage (~7.5%), which renders it not
usable in operational context, while additionally the rating
prediction results cannot be considered representative. Under
this rationale, JACC is excluded from the presentation of the
results and the relevant discussions. All the other 14 metrics
achieved satisfactory average coverage rating results, taking
into consideration the high sparsity of the datasets, ranging
from 26% (for the ARI similarity) to 50% (for the MSD
similarity).

Regarding the MAE measure (Fig. 4), the SP metric
achieved the lowest MAE, among all 14 metrics (0.62 and
0.63, when the mean-centred and the weighted sum predic-
tion functions are used, respectively), followed by the ARI
and the ACOS metrics. At the dataset level, the SP scored
the lowest MAE in five and three (out of 10) datasets when
the mean-centred and the weighted sum prediction functions
are used, respectively.

Regarding the RMSE (Fig. 5), the optimal average RMSE
is achieved by the SP with a score of 0.97 (mean-centred)
and 1.04 (weighted sum), having the lowest RMSE score in
6 (mean-centred) and 4 (weighted sum), out of 10 datasets.
Very good RMSE results are also achieved by the CPCC
and the ACOS. Regarding the F1-measure (Fig. 6), the high-
est scores in both prediction functions were obtained by
the ACOS, followed by the EUCL, the CHEB, and the SP.
F1 scores exhibit higher variations compared to the case of
THR = 0.0 falling in the range [0.815, 0.831] for mean-
centred prediction computations (the highest value is 2%
larger than the lowest one) or [0.825, 0.837] for weighted
sum prediction computations (the highest value is 1.5% larger
than the lowest one) (Fig. 6).

Lastly, when the THR increased to 0.5, the JACC attained
an even lower prediction coverage (~2.6%) and hence is
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again excluded from the result presentation and discussion.
All the other 14 metrics achieved satisfactory average cov-
erage rating results, again taking into consideration the high
sparsity of the datasets, ranging from 21% (for the ARI) to
49% (for the MSD). Regarding the MAE results, as shown
in Fig. 7, the SP metric achieved the lowest MAE among all
14 metrics, with 0.59 in both prediction formulas, followed
by the MANH, the EUCL, and the CHEB similarity metrics.

The optimal average RMSE (Fig. 8) is achieved by the
SP with a score of 0.95 (mean-centred) and 1.01 (weighted
sum), followed by the CPCC with a score of 0.99 (mean-
centred) and 1.05 (weighted sum). Regarding the F1-measure
(Fig. 9), the highest score in both the prediction functions was
achieved by the NSM, followed by the ACOS, the ARI, and
the SP metrics. F1 scores fall in the range [0.829, 0.842]
for mean-centred prediction formulation (the highest value
is 1.3% larger than the lowest one) and [0.811, 0.833] for
weighted sum prediction formulation (the highest value is
2.7% larger than the lowest one).

Overall, when the neighbour selection is based on the sim-
ilarity threshold, the SP and the ACOS similarity metrics
achieve the highest rating prediction accuracy results. For
the detailed results, the interested reader is referred to the
technical report [76].

4.2.2 Evaluation under the KNNs NN selection scheme

Figure 10 illustrates the average rating prediction MAE
observed for the 15 similarity metrics considered in this
paper, using the 10 sparse datasets presented in the begin-
ning of Sect. 4. We can observe that the SP and the JACC
metrics achieve the lowest MAE among all 15 metrics. The
optimal average RMSE (Fig. 11) is achieved by the JACC,
with 1.00 and 1.08, when the mean-centred and the weighted
sum prediction functions are used, respectively. Satisfactory
results are also achieved by the SP and the MSD similarities.

Regarding the F1-measure (Fig. 12), the highest score in
both prediction functions is attained by the NSM, followed
by the COS metric. F1 scores fall in the range [0.827, 0.836]
for mean-centred prediction formulation (the highest value
is 1% larger than the lowest one), and [0.809, 0.826] for
weighted sum prediction formulation (the highest value is
2.1% larger than the lowest one).

Regarding the rating prediction coverage, the majority of
the metrics have satisfactory results, taking into considera-
tion the high sparsity of the datasets, ranging from 28% (for
the ARI) to 44% (for the JACC).

When K increases to 500, the rating prediction coverage
is slightly improved, as expected, ranging from 29% (for the
ARI) to 45% (for the JACC and the MSD). The increase of
K has no significant impact on the accuracy metrics, with the
average MAE across all metrics and datasets increasing by
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0.48% (Fig. 13) and the average RMSE increasing by 0.94%
(Fig. 14).

Regarding the MAE, we can observe (Fig. 13) that both the
SP and the JACC metrics achieve the lowest MAEs, among
all 15 metrics.

Considering the RMSE (Fig. 14), the optimal results are
achieved by the JACC, followed by the MSD metric in
both prediction formulas used. Regarding the F1-measure
(Fig. 15), the highest score is achieved by the NSM, fol-

similarity metrics

lowed by the COS, ACOS, CPSS and the MSD metrics. For
the detailed results, the interested reader is referred to the
technical report [76].

4.2.3 Aggregated results
Based on the experimental output, presented in the previous

two subsections, Table 6 depicts the aggregated results of the
rating prediction evaluation. More specifically, for each of the
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similarity metrics evaluated in this work (corresponding to
rows of Table 6) and each of the neighbour selection settings
used (five primary columns), this table depicts the metric that
achieved the optimal results, for the three prediction error
metrics used (secondary columns—'M’ for the MAE, 'R’
for the RMSE, and 'F’ for the F1-measure metrics), when
the mean-centred prediction formula is utilised to formulate
the rating prediction numeric value. The similarity metric that
achieved the highest performance is marked with a double-
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plus sign “++”, while the runner-ups whose performance is
“very close” to the highest performance are marked with a
single-plus sign “+7.!

! I'The MAE and the RMSE of a runner-up algorithm for an experiment
are deemed to be “very close” to the highest performance, if they are
found to be at most 5% larger than the corresponding lowest MAE and
RMSE value observed in the specific experiment. For the F1-measure,
the margin is setto 1%, considering that the F1-measure scores observed
in the experiments vary by small margins, up to 2.7%. Depending on
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In Table 6, we can notice that when the mean-centred pre-
diction formula is used for prediction value computation, the
SP similarity metric achieves either the highest performance
or a performance “very close” to the highest one, in every
setting. Furthermore, satisfactory results are achieved by the
ARI and the CHEB. When either the KNN method is used

the specific use case, other thresholds can be adopted for classifying
runner-up performance as “very close”.

similarity metrics

for the neighbour selection or the similarity threshold with
low THR value set, the JACC achieves very good results, as
well.

Table 7 depicts the respective aggregated results, when the
weighted sum function is used for the prediction value for-
mulation. In Table 7, we can observe that when the weighted
sum function is used for prediction value computation, the
SP similarity metric achieves either the highest performance
or a performance “very close” to the highest one, in every
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setting. Moreover, satisfactory results are achieved by the
CPCC and the ACOS metrics.

To further confirm the validity of the findings, we per-
formed ANOVA tests on the results of different experiments.
A distinct ANOVA test was conducted for each experiment
configuration and result (method for NN selection and its
related parameters, formulation of predictions, evaluation
metric). All ANOVA tests designated that the obtained results
are statistically significant at the level of 0.05. For con-
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ciseness purposes, Table 8 depicts selected ANOVA results;
all ANOVA p-values have been found to be in the range
[0.0087,0.0437].

The success of the SP metric is attributed to the following
characteristics:

e the SP metric exhibits lower sensitivity to outliers [78], as
compared to other metrics, such as PCC and COS. This
is particularly important for sparse datasets, where the
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Table 6 Aggregated results

when the mean-centred mean- K=250 K=500 THR=0.0 THR=0.25 THR=0.5
prediction formula is used centred M R F M R F M R F M R F M R F
JACC ++ 4 ++ o+ o+ + + +
MANH + + + + + +
EUCL + + + + + +
CHEB + + + + + + ++ +
PCC + + + +
CPCC + + + + + + + + + + +
SPCC + + + + +
COS + + + + + + +
ACOS + + + ++ + + +
SP + + + + + + ++  ++ 4+ ++  ++ 4+ ++  ++ 4+
TAU + +
MSD + + + + + + +
NSM + ++ ++ + + ++
ARI + + + + + + + + + + + + +
Table7 Aggregated results weighted ~ K=250 K=500 THR=0.0 THR=0.25 THR=0.5
when the weighted sum
prediction function is used sum M R F M R F M R F M R F M R F
JACC + ++ + ++ + +
MANH + + + +
EUCL + + +
CHEB + + + +
PCC + + +
CPCC + + + + + + + + + + +
SPCC + + + + +
COS + + + + +
ACOS + + + + + + ++ + + ++ + +
SP ++ o+ + ++ o+ + ++ 4+ ++ o+ o+ +H o+ o+
TAU +
MSD + + + + + + + +
NSM ++ + ++ + ++
ARI + + + + + + + + +
AMI + +
Table 8 ANOVA results for different experiments
Experiment Metric ANOVA p-value Notes
Top-K (K = 250)/weighted sum MAE 0.0356 Statistically significant at the level of 0.05
Top-K (K = 250)/weighted sum RMSE 0.0092 Statistically significant at the level of 0.01
Top-K (K = 250)/weighted sum F1 0.0406 Statistically significant at the level of 0.05
Threshold (T HR = 0.5)/weighted sum MAE 0.0358 Statistically significant at the level of 0.05
Threshold (T H R = 0.5)/weighted sum RMSE 0.0106 Statistically significant at the level of 0.05
Threshold (T HR = 0.5)/weighted sum F1 0.0363 Statistically significant at the level of 0.05
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number of co-rated items is small, and therefore, outliers
will have high impact.

the SP metric uses rankings instead of rating values, and
therefore is not affected by the scaling of ratings. The
ratings entered by different users may exhibit varying
scaling, either manifested as strictness/leniency or as the
use of a portion of the rating scale vs. the use of the full
rating scale.
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e the SP metric is able to better capture non-linear rela-
tionships between data [79], and common user ratings in
sparse datasets may be nonlinear. On the contrary, other
metrics, such as PCC and COS, are capable of capturing
only linear relationships.
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4.2.4 Analysis of metric behaviour in relation to sparsity

In this subsection, we examine the behaviour of metrics in
relation to dataset sparsity. Since different datasets have been
found to exhibit divergent results, in order to warrant inde-
pendence from the individual dataset characteristics, we do
not directly compare the results of different datasets. Instead,
we have subsampled datasets at subsets with size equal to
10%, 30%, 50%, 70%, and 90% of the full dataset and tested
the performance of the metrics in these subsets.

Figure 16 depicts the MAE improvement achieved by
the 15 metrics, at different subsampling ratios of the
Yahoo!Movies dataset, when the top-K NNs are selected,
using K=250. The base against which the improvement is
computed is the MAE achieved by each metric when the
10% of the Yahoo!Movies dataset is used. We can observe
that the general trend is that the availability of more data
leads to MAE improvement (i.e. reduction). There do exist
some cases for which when the size of the dataset increases,
the MAE increases too (e.g. the cases of the CPCC and the
NSM metrics when the percentage of data increases from
30 to 50%). This is attributed to the fact that the increase in
the data sampling ratio leads to the inclusion of previously
excluded users in the dataset. These users may have very low
numbers of ratings present in the current extent of the dataset,
and therefore, the predictions formulated for them are bound
to exhibit high error magnitudes, leading to the deterioration
of the overall MAE.

Correspondingly, Figures 17 and 18 illustrate the improve-
ment in the RMSE and the FI metrics under the same
experiment. We can observe that the RMSE metric fol-
lows the same improvement pattern. This is expected since
both metrics express qualitative properties of the prediction
error magnitudes. Thus, both are computed against the same
value sets. Regarding the F1-measure, this is also found to
improve along with the increase in the subsampling ratio
of the dataset. Small fluctuations are observed. These fluc-
tuations are attributed to the same root cause inducing the
anomalies for the MAE and RMSE metrics, i.e. the inclusion
in the dataset of previously excluded users, the predictions
for whom exhibit high errors.

When conducting the same experiments using the thresh-
old method for NN selection is employed, with parameter
THR setto 0.5, the same behaviour is observed, i.e. decreased
sparsity leads to improvements in the MAE, RMSE, and F1
metrics. Since the JACC metric produces very few ratings
for subsampling ratios less than 70%, conclusions can only
be drawn for its behaviour for the experiments using sub-
sumpling ratios 70%, 90%, and 100%. In this range, the
JACC metric demonstrates a sharp increase in its perfor-
mance when sparsity is reduced; however, this is due to the
fact that exhibits very low performance (MAE, RMSE and
F1) at subsampling rate equal to 70%, and therefore, it has

substantial improvement margin. The detailed results for this
experiment are included in the technical report [76].

To further validate that the conclusions drawn from
observing the performance of different metrics when the
YahooMovies dataset was subsampled at different ratios, we
repeated the same experiment using the Ciao dataset. The
results obtained from this experiment align closely with the
findings presented above for the YahooMovies dataset, with
higher subsampling rates (and henceforth decreased sparsity)
leading to improvements in the MAE, RMSE, and F1 metrics.
Again, some fluctuations are present, because the increase in
the sampling rate leads to the inclusion of new users with
low number of ratings, the predictions for whom have high
error margins. For the detailed results, the interested reader
is referred to the technical report [76].

4.2.5 Implicit feedback

The experiments presented above consider datasets with
explicit feedback, i.e. datasets where users have explicitly
rated items. In many cases, however, explicit feedback is
unavailable, and RecSys resort to the use of implicit feed-
back, i.e. exploiting the interaction of users with items to
infer the users’ interest towards items. The inferred prefer-
ence is subsequently used to identify similar users or items,
and estimate user preferences towards items that users have
not interacted with. Finally, items with the highest preference
estimation are recommended to the user. Notably, implicit
feedback can be also employed to build an RecSys aiming to
specific qualitative properties; for instance, [80] reports that
RecSys based on implicit feedback promote user engage-
ment, while explicit rating-based RecSys promote accuracy.

In this context, user or item similarities may need to
be computed; therefore, the issues of metric performance
and selection are relevant for this class of RecSys as well.
In this context, specialised similarity measurements have
been developed [81, 82] or machine learning-based meth-
ods are used, where embeddings are constructed and these
are subsequently fed into neural networks that formulate rec-
ommendations [83, 84]. The Bayesian Personalised Ranking
(BPR) [85, 86] is a prominent approach in this category,
which is gaining acceptance. Since the specialised similar-
ity metrics are domain-specific and are typically developed
for individual cases, whereas machine learning-based mod-
els learn similarities through the neural networks, without the
explicit use of a mathematical similarity function, this work
will not consider these cases.

An alternative approach is to exploit traits of user interest
against items to produce estimations of ratings, convert-
ing thus implicit ratings to explicit [87, 88] and create a
transformed dataset. Once (estimated) explicit ratings are
available, the transformed datasets can be processed by
CF-based algorithms to generate predictions and formulate
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recommendations. In the remainder of this subsection, we
present an experiment aiming to provide insight to the capa-
bilities of different metrics to be used in the phase of rating
prediction within this process. We note here that since numer-
ous approaches can be used for transforming implicit ratings
to explicit, which entail the use of different parameters and
are dependent on the nature of the implicit data, the topic
of the performance of similarity metrics on rating estima-
tions produced on the basis of implicit feedback cannot be
exhaustively covered in this paper. The goal of this section is
to provide some insight in this topic, while a more compre-
hensive analysis will be considered in our future work.

In the context of our experiment, we use the Last.FM
dataset [89], which contains 166154 listening records, with
each record indicating when a particular user listened to a
specific song. Initially, the distribution of number of listen-
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ings was analysed, and the results are illustrated in Figure 19.
Based on this distribution, the mapping between number of
listenings and estimated ratings illustrated in Table 9 was
adopted for the transformation of the original dataset to a
dataset using explicit ratings. While alternative mappings
can be applied, this mapping was used because it (a) uses
the complete range of the rating scale and (b) provides the
best possible balance between different estimated values of
ratings.

After the dataset was converted to explicit ratings, it con-
tained 125764 records with a sparsity of 84.41%. This dataset
was of high density, and therefore, it was subsampled with
a factor of 1%, producing a dataset with sparsity equal to
99.84%, which s classified as “medium sparsity”. Finally, the
experimental procedure described in introduction of Sect. 4
was applied.
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Table 9 Mapping between number of listenings and estimated ratings
for the Last.FM dataset

Number of listenings Estimated rating
1 1
2 2
3 3
4-5 4
>6 5

In the results obtained, it was observed that the ACOS and
MANH measures produced very low coverages (less that
10%) under all configurations and are therefore excluded
from the presentations of the results, under the rationale that
these low coverages render them inapplicable for practical
use, regardless of the accuracy of their predictions. The same
holds for the JACC, EUCL, and CHEB metrics, under the
threshold-based NN selection with THR=0.5.

1 1 1 T T 1

5 6 7 3 9 210

Number of listenings

Figures 20, 21 and 22 illustrate the results of the exper-
iments for with the subsampled Last.FM dataset when the
Top-K approach was employed for NN selection, with
K=250. Note that since the subsampled dataset contained
less than 250 users, increasing the K parameter in the Top-K
approach for NN selection would not have any effect. In the
results, we can observe that the JACC, TAU, and ARI met-
ric achieve the lowest MAE, while the SP, TAU, and ARI
metrics attain the lowest RMSE. Regarding the F1 metric,
SP exhibits the highest performance, followed by AMI and
JACC.

Under the threshold-based approach, when THR is set to
0, the SP, TAU, and ARI metrics achieve the lowest MAE and
the lowest RMSE too, while SP, AMI ARI, and JACC attain
the highest F1 value. Finally, when the THR parameter is set
to 0.5, SP, TAU and ARI again achieve the lowest MAE and
the lowest RMSE, while the highest F1 value is attained by
SPCC, SP, and PCC. These results are not presented in detail
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for conciseness. The interested reader may retrieve them from
the technical report [76].

These results indicate that again the SP metric exhibits
optimal or close-to-optimal performance when explicit rat-
ings are estimated on the basis of implicit feedback; however,
as stated above, further investigation is needed to reach deci-
sive conclusions. This research is considered as part of our
future work.

4.3 Result discussion

Based on the output of the experimental evaluation presented
in the preceding subsection, the following conclusions can be
derived regarding the three research questions setin Sect. 1.1:

e RQI: Which user similarity metric seem to yield the best

results when the CF algorithm is applied to sparse CF
datasets?
Answer: Based on our set of experiments, the SP simi-
larity metric was proved to achieve the best results when
sparse CF datasets are used. Satisfactory results are also
achieved by the ARI, the CHEB and the CPCC.

e RQ2: Do other parameters of the CF algorithm (e.g.

neighbour selection approach, rating prediction formula,
density of the dataset) affect the choice of the user simi-
larity methods who yield the best results?
Answer: Based on our set of experiments, the SP simi-
larity metric achieves either the highest performance or
a performance “very close” to the highest one, in every
setting. Hence, the results of this metric seem to be inde-
pendent of other parameters of the CF algorithm.

e RQ3: Are the PCC and the COS, among the best similar-

ity metrics in sparse CF datasets, as expected, since they
are used in most of the CF research works?
Answer: Interestingly, based on the experiments pre-
sented in the preceding subsection, neither the PCC nor
the COS are among the metrics that achieve satisfactory
rating prediction results when the CF algorithm is applied
to sparse CF datasets. More specifically, the COS metric
is ranked near the middle of the evaluated metrics, while
the PCC is ranked much lower.

4.4 Research implications

The work presented in this paper has a number of theoret-
ical and practical implications. Considering the theoretical
implications, to the best of the authors’ knowledge, there
is no previous work that assesses the effectiveness of user
similarity metrics in sparse CF datasets. For the results of
this work to be reliable, multiple CF prediction parameters
are taken into account, considering NN selection techniques,
rating prediction computation formulas, and rating predic-
tion accuracy measures. Lastly, to ensure that the evaluation
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is not biased by the item domain, the experiments include 10
datasets (the baseline comparison is on the same 10 datasets
for all 15 metrics) that span across several product fields,
from Music and Movies, to Books and Videogames.

It is worth noting that due to the fact that this work fol-
lowed the approach to warrant the reliability of the results
and generalisability of the conclusions, i.e. the consideration
of multiple CF prediction parameters settings and multiple
NN selection techniques, rating prediction computation for-
mulas and rating prediction accuracy measures, the results
listed in this paper provide insight on the effect that each of
these settings and parameters have on the CF rating predic-
tion process.

In terms of practical implications, the results of this eval-
uation review point out the user similarity metrics that yield
the best results when the CF algorithm is applied to sparse
datasets. As a result, future CF research works can make use
of this output and select to incorporate certain similarity met-
rics when applying a CF algorithm in sparse CF datasets, to
accomplish better rating prediction results, which will lead
to improved recommendation quality. Based on the experi-
mental output presented in Sect. 4.2, this paper proposes the
inclusion/use of primarily the SP similarity metric and secon-
darily the ARI, the CHEB, and the CPCC similarity metrics,
when applying CF algorithms to sparse datasets, in order to
accomplish better rating prediction results, which will lead to
improved recommendation quality. In the industry domain,
including e-commerce sites and streaming platforms, admin-
istrators can exploit the findings of this study and tune their
systems to use the most prominent similarity metric, achiev-
ing thus more successful recommendations and consequently
increasing user satisfaction [44, 45].

5 Conclusions and future work

The work presented in this paper is an extensive evaluation
review of 15 widely used user similarity metrics in sparse CF
datasets. The evaluation included (i) two neighbour selection
approaches, namely the similarity threshold approach and the
top-k approach, and (ii) two rating prediction formulas, the
mean-centred formula, and the weighted sum method, (iii) 10
sparse CF datasets, from five different providers, having spar-
sities ranging from 99.76% to 99.997%, and (iv) three rating
prediction accuracy metrics, the F1-measure, the RMSE, and
the MAE, all three widely used in CF RecSys research.

The evaluation results showed that the metrics that
achieved the higher prediction scores (the highest F1-
measure and lowest RMSE and MAE) were found to be,
primarily, the Spearman rank correlation, followed by the
Adjusted Rand Index, the Constrained PCC, and the Cheby-
sev distance. Therefore, based on the evaluation output
presented in Sect. 4, this paper proposes the inclusion of
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at least one of the aforementioned four similarity metrics,
when applying CF algorithms to sparse datasets.

Regarding future work, we plan to conduct research on the
effect of the number of commonly evaluated items thresh-
old for NN selection in sparse CF datasets, as discussed in
Sect. 4.1. Furthermore, we plan to evaluate CF user similarity
metrics with dense datasets (such as the MovieLens datasets),
as well as domain-specific datasets, for broader applicability
and increased generalisability.

Moreover, we plan to broaden the user similarity met-
rics, by evaluating newer ones introduced in recent works,
and more specifically hybrid similarity metrics. Towards this
direction, and considering that the SP metric has demon-
strated high performance, the integration of the SP similarity
metric with hybrid similarity metrics [23, 90] including the
use of the SP user vicinity as a feature in machine learning-
based recommendation models [91-93] will be analysed.

Deep learning-based approaches for computing user sim-
ilarity [93, 94] have emerged as a promising development
in the RecSys domain, and are currently gaining acceptance.

\
=
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Similarity metric

The investigation of the effectiveness of these approaches
and their comparison with traditional and hybrid similarity
metrics will be also considered in the context of our future
work. The effect of adopting alternative techniques for the
identification of top-K neighbours, such as the Lower-Left
Partial AUC [95], will also be studied.

Lastly, we plan to investigate the potential impact of
backbone models, such as Matrix Factorisation (MF) or
LightGCN, on the performance of the SP similarity metric,
considering the growing use of neural CF approaches [96,
971.
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